Objectives:

- Determine whether or not a given function is differentiable
- Compute derivatives of functions
- Recognize when an expression is the derivative of another function

In the last project, we worked with the derivative function:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \quad \text { alternatively, } \quad f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Example: Given the graph of the position of an object, $s(t)$, graph the velocity of the object, $v(t)$.
Note: $v(t)=$ \qquad .

Example: This limit is the derivative of which function?

$$
\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}=f^{\prime}(x) \text { where } f(x)=\sin (x)
$$

Example: What about this limit? Is it a derivative for some function?

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=f^{\prime}(0) \text { where } f(x)=e^{x}
$$

Notation: Given a function $y=f(x)$, we write the derivative as __f $\quad f^{\prime}(x) \quad$ or $\frac{d y}{d x}$
Higher order derivatives: We can find the derivative of $f^{\prime}(x)$ which is called a "second derivative" and is written \qquad $f^{\prime \prime}(x)$ $\frac{d^{2} y}{d x^{2}}$

If $s(t)$ is a function representing position over time, then $s^{\prime}(t)$ gives \qquad and $s^{\prime \prime}(t)$ gives acceleration Also, $s^{\prime \prime \prime}(t)$ is called \qquad .

Non-differentiable functions:

- If $f(x)$ is not continuous, then it is not differentiable.
- If $f(x)$ has a vertical tangent line at any point, it is not differentiable (ex. $x^{1 / 3}$).
- If $f(x)$ has a corner, it is not differentiable (ex. $|x|$).

Example: Prove that $g(x)=x^{1 / 3}$ is not differentiable at $x=0$.
We need to compute $\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}$.

$$
\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{1 / 3}-0}{h}=\lim _{h \rightarrow 0} \frac{h^{1 / 3}}{h}=\lim _{h \rightarrow 0} \frac{1}{h^{2 / 3}}=\infty
$$

Since $\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}$ D.N.E., we know $g(x)=x^{1 / 3}$ is not differentiable at $x=0$.

Fact: A function f that is differentiable at a is also continuous at a.
Proof: Suppose that $f^{\prime}(a)$ exists. Using the alternate definition of derivative, $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists. We must show that $f(x)$ is continuous at $x=a$ which means $\lim _{x \rightarrow a} f(x)=f(a)$. We can compute

$$
\lim _{x \rightarrow a} f(x)-f(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}(x-a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a)=f^{\prime}(a) \cdot 0=0
$$

We have shown $\lim _{x \rightarrow a} f(x)-f(a)=0$. So $\lim _{x \rightarrow a} f(x)=f(a)$.

